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Abstract

Error classification methods are used throughout aviation to help understand and
mitigate the causes of human error. Many assumptions underlying error classifi-
cation, however, remain untested. For example, "error" is taken to mean different
things, even within individual methods; and a close mapping is uncritically pre-
sumed between the quantity measured (errors) and the quality managed (safety).
Further, error classifications can deepen investigalive biases by merely re-
labeling error, rather than explaining it. This essay reviews such assumptions and
proposes alternative ways forward.
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Introduction

Why do we want to classify human errors? Classification of observed phenomena
is basic to science. It serves to order empirical reality as we encounter it; it cre-
ates a causal structure that supports our understanding of phenomena. Classifi-
cation of human errors has practical reasons along the same lines: it can help
managers and engineers understand and presumably manage ways in which peo-
ple contribute to system reliability and breakdown. Aviation Human Factors has
produced categorizations such as Kowalsky ez al. (1974), who classified decision
errors together with the conditions that helped produce them; Billings &
Cheaney (1981), who categorized information transfer problems (e.g. instructions;
errors during watch change-over briefings; coordination failures); Fegetter (1982),
who divided error causes into cognitive, social and situational (physi-
cal/environmental/ergonomic) systems; and Rouse & Rouse (1983), who catego-
rized error causes along the lines of a linear information processing/decision
making model. Currently, LOSA (Line Oriented Safety Audit) is making ils
rounds through the aviation industry as error classification and tabulation tool
(e.g. Helmreich er al., 1999). One reason for its popularity is the idea that it can
help demonstrate how Crew Resource Management (CRM) training helps im-
prove aviation safety (see Croft, 2001). The adoption of CRM (even by regulators)
was predicated on the belief that it would lead to better safety (Helmreich &
Foushee, 1993). Yel such training is expensive and needs to be justified in the
face of doubts whether the link between CRM training and improved safetly exisls
in the first place (cf. Maurino, 1999; JAA, 2001). Counting and tabulating errors
in relation to CRM interventions is thought to yield such justification (Crolft,

2001).

The aim of error classification tools is as simple in principle as it is difficult in
practice: go beyond the superficial "error" and probe the system for underlying
reasons why it occurred. Human error cannot be the conclusion of an investiga-
tion, it has to be the starting point (Woods et al., 1994). This has long been im-
perative in (aviation) human factors (Fitts and Jones, 1947): since human error is
systematically connected to features of people's tools and tasks, we need to work
on those tools and tasks if we want to prevent recurrence (Maurino et al., 1995;
Reason, 1990; 1997). Error classification, however, can be seen to run into a
number of problems in achieving such an aim in practice. This paper looks al
three of the more acute issues:

* (Classification of errors is easily mistaken for analysis and deeper under-
standing.

* Iinding deeper reasons for the observed error is often a matter of finding
other errors, either inside the heads of the people affected, or by other peo-
ple;

e Safely is modeled as the absence of "negatives" (errors), misguiding manage-
rial interventions.

It then looks for alternative ways forward.



Mistaking classification for understanding

Croft (2001) explains how the LOSA method of error counting, popular in com-
mercial aviation, asks observers of line practice to rate aircrew errors according lo
the following five categories: 1) Intentional non-compliance errors (conscious
violations against standard operating procedures or regulations); 2) Procedural
errors (slips, lapses or mistakes); 3) Communication errors (incorrectly transmit-
ted or interpreted information); 4) Proficiency errors (due to a lack of knowledge
or basic flying skills); and 5) Operational decision errors (discretionary decisions
not covered by regulation and procedures that unnecessarily increase risk). These
categories have been applied to observations of 1426 commercial airliner flights
since 1997. Interestingly, more than half the human errors detected by observers
were never detected (or classified as errors) by the flight crews themselves. This is
chalked up as a success of the method (Croft, 2001) rather than as a warning of
potentially misleading data, or an indication of a mismatch in perspectives on
what "error" really means. In fact, the first problem in counting errors occurs is
that observers have to agree what they mean by "error'. In today's aviation error
classification systems, error can mean several things:

* Error as the cause of failure. IFor example: This event was due to human er-
ror. Classifications rely on this definition when seeking the cause of operator
error in, for instance, a supervisor's "failure to provide guidance" (Shappell &
Wiegman, 2001, p. 73).

e Lirror as the failure itself. For example: The operator's decision was an error
(e.g. Helmreich, 2000). Classifications rely on this definition when categoriz-
ing the kinds of observable errors operators can make (e.g. decision errors,
perceptual errors, skill-based errors) (Shappell & Wiegmann, 2001).

* Error as a process, or, more specifically, as a departure from some kind of
standard. This standard may consist of operating procedures. Violations,
whether exceptional or routine (Shappell & Wiegmann, 2001), or intentional
or unintentional (Helmreich, 2000), are one example of error according to the
process definition. Depending on what we use as standard, we of course
come Lo different conclusions about what is an error.

Not differentiating among these different possible definitions of error is a well-
documented problem (Dougherty, 1990; Hollnagel, 1998): error classification
schemes often display this inability to sort out what is cause and what is conse-
quence; what is genotypical, what is phenotypical. LOSA contains categories of
manifestations of error (such as communication errors) as well as causes of error
(such as proficiency problems), thus it too mixes causes and consequences. This
does not help our understanding of error.

Without clear definitions, or models of error, error counting amounts to pseudo-
science or numerology. Measurement is of course fundamental to science. But
measuring without an explicit underlying model that directs observations and
allows classification is folk science. The measurements typical of error counting
methods are products of folk models—commonly held notions about the nature



of human work. Folk models are inexplicit connections between the behavioral
particulars that are measured and the condition they point to. Folk models en-
courage observers to measure what can be superficially observed (and thus meas-
ured) simply because it can be measured. In actual scientific endeavors, the defi-
nition of a measurement depends on how the corresponding domain or phe-
nomenon is theoretically described or explained (Hollnagel, 1998). As Einstein
said to Heisenberg: 'whether you see a thing or not depends on the theory which
you use. It is the theory which decides what can be observed' (quoted in Angell &
Straub, 1999, p. 187). The measurement presupposes a clarification of what the
model behind the measurement is, where a model is understood as a simplified
representation of the salient features of the target situation. The model constrains
what can be measured by describing the essential elements of performance and
the model parameters thereby become the basis for specifying the measurements

(Hollnagel, 1998).

Folk modeling makes error classification fundamentally untestable. For, without
an underlying analytic model, who can go back and challenge the conclusions of
the observer once the moment of observation has receded into history and the
excised "error" has disappeared into the categorization tool, accompanied with its
hypothesized mental function (e.g. prioritizing attention) or organizalional defect
(e.g. oversight failure) as "explanation"? No such testing is possible —denying this
proto-scientific activity of error classification even the most basic scientific qual-
ity-control since Karl Popper: falsification. Observed practitioners themselves
may have an opportunity to object, of course. Bul if observers claim that their
method has succeeded when its error count is twice as high as that of the practi-
tioners themselves (Croft, 2001), there can be little confidence that the practitio-
ner perspective is afforded any relevance at all.

The disembodiment of data

Second, understanding is retarded when what can be known about human per-
formance is replaced by what can be forced into five categorical labels of an error
counting method. Attempts to map situated human capabilities such as decision
making, proficiency or deliberation onto discrete categories are doomed to be
misleading for they cannot cope with the complexity of actual practice without
serious degeneration (Angell & Straub, 1999). Error classification disembodies
data. It removes the context that helped produce the error in its particular mani-
festation. This disables understanding because by excising performance frag-
ments away from their context, error classification destroys the local rationality
principle. This has been the fundamental concept for understanding—not judg-
ing—human performance for the last fifty years: People's behavior is rational, if
possibly erroneous, when viewed from the inside of their situations, not from the
outside and from hindsight. The local rationality principle also reminds us that
the consequences of actions are not well-correlated with intentions, yet this com-
pletely evaporates in the wake of error classification. The point in learning about
human error is not to find out where people went wrong. It is to find out why
their assessments and actions made sense to them at the time, given their knowl-



edge, goals, tools and limited resources. For we have to assume that if it made
sense to someone (given the background and circumstances), it will make sense
to someone else too, and the "error" will repeat itself. Controversial behavior can
be made to make sense (read: understood) once resituated in the context that
brought it forth (Vaughan, 1996; Snook, 2000; Dekker, 2001). Indeed, Kowalsky's
(1974) integration of context in classifying errors anticipates (if’ crudely) later cri-
tiques from for example Dougherty (1990), who decries the insufficient ability of
error classifications to describe how context wields an influence on human as-
sessments and actions that get classified as "erroneous”.

Once the observation of some kind of "error" is tidily locked away into some
category, il has been objectified, formalized away from its context. Without con-
text, there is no way lo re-establish local rationality. And without local rationality,
there is no way to understand human error. Error categorization presents an illu-
sion of understanding. It disconnects human agents' performance from the con-
text that brought it forth, from the circumstances that accompanied it; that gave it
meaning; and that hold the keys to its explanation. Instead it renders perform-
ance fragments disembodied: as uncloaked, context-less, meaningless shrapnel
scallered across superficial categories in the wake of the auditors' 1426th assign-
ing frenzy. Error calegorizalion is not equivalent to understanding error, and
perhaps not even the beginning of understanding error. In fact, it may be the op-
posite.

Explaining error by linding errors elsewhere

The common aim of error classification systems is to try to find, through catego-
rization, what lies behind observed errors. Further explanation typically takes
one of two forms: it is sought either in shortcomings of hypothesized information
processing structures in people's minds (Rouse & Rouse, 1983; Kirwan & Ains-
worth, 1992) or it is sought in organizational deficiencies that surrounded people
al the time (e.g. Shappell & Wiegmann, 2001). None of this, however, explains
error—it simply displaces the interpretative load.

According to Helmreich (2000), "errors result from physiological and psychologi-
cal limitations of humans. Causes of error include fatigue, workload, and fear, as
well as cognitive overload, poor interpersonal communications, imperfect infor-
mation processing, and flawed decision making" (p. 781). This is not very enlight-
ening, because in this "explanation" the errors are simply the result of other er-
rors (e.g. "flawed" decision making). It is not explanation, but re-labeling. Simi-
larly, Shappell & Wiegmann (2001, p. 63) suggest that observed errors can be la-
beled as "poor decisions", "failures to adhere to brief", "failures to prioritize at-
tention", "improper procedure”, and so forth. Such reformulations of error, too,
are illusions of deeper understanding. Yel it is typical for error classification
methods, especially those dominated (implicitly or explicitly) by information
processing approaches to human factors. Performance problems are "explained"
by reference to inherent limitations of mental processing mechanisms or other
human shortcomings. FFor example, Rouse & Rouse (1983) seek the source of er-



ror somewhere along a hypothesized linear psychic highway, that strings together
the head's input and output through a fixed sequence of representational traffic
stops: observation of system state; choice of hypothesis; testing of hypothesis;
choice of goal; choice of procedure; execution of procedure. They are not alone
in seeking enlightenment from such quarters (e.g. Kirwan & Ainsworth, 1992),
and thus all share the major shortcomings. Errors are not explained. They merely
gel displaced from the outside to the inside; from observable actions to psychic
misfirings. As a consequence, the classification is totally unverifiable.

Fits' & Jones' (1947) orientation, as well as that of later human factors work, has
always been more ecological: performance problems can be understood by refer-
ence lo constraints that the world imposes on people's goal-directed behavior.
Put crudely: if you want to understand what went on in the mind, look in the
world in which the mind found itself, instead of trying to pry open the mind.
Constraints in the world can for example arise from the engineered interface
(which, by the way, is nowhere to be found in LOSA) or the organizational con-
text (e.g. Maurino et al., 1995). Yel here too, an illusion of explanation slips easily
into error classification methods. When looking for organizational contributors
to operator error, the reasons are simply sought in errors that occurred higher up
in the chain of command. For example, operator errors can be "understood" on
the basis of unsafe supervision, which includes "failure to provide guidance, fail-
ure to provide oversight, failure to provide training, failure to provide correct
data, inadequate opportunity for crew rest" and so forth (Shappell & Wiegmann,
2001, p. 73). This too, simply re-introduces "human error" in a different cloak, or
by a different human.

Also, these putative "explanations" only judge people for not doing what they (in
hindsight) should have done. Modern human factors concepts of this sort heavily
populate the various error classifications, for example loss of effective CRM;
complacency, non-compliance; loss of situation awareness. While masquerading
as explanations, these labels do little more than saying "human error" over and
over again, judging performance instead of explaining it:

e Loss of CRM (Crew Resource Management) is one name for human er-
ror—the failure to invest in common ground, to share data that, in hindsight,
turned out to have been significant.

e Complacency is also a name for human error—the failure to recognize the
gravily of a situation or to adhere to standards of care or good practice.

* Non-compliance is a name for human error—the failure to follow rules or
procedures that would keep the job safe.

e Loss of situation awareness is another name for human error— the failure to
notice things that in hindsight turned out to be critical. We merely judge
people for not noticing what we now know to have been important data in
their situation, calling it their error— their loss of situation awareness.

That these kinds of phenomena occur and even help produce trouble is indisput-
able. People do not coordinate perfectly across workplaces; people adjust their
vigilance and their working strategies over time on the basis of their perception



of threat; people locally adapt written guidance; and there is always a mismatch
between what people observed and what we can show was physically available to
them in hindsight. But simply labeling these phenomena fashionably, and stop-
ping there because it now fils a category of the error classification, does not ex-
plain anything.

Safety as the absence of negatives

Error classification methods assume that safely is a posilivistic empirical given.
Safety is out there to be discovered by the auditor with the right labeling tool. It
can subsequently be forced in certain directions by managers wielding the num-
bers. IFor example, pilots who violate rules are 1,4 times more likely to commit
operational errors (Helmreich ez al, 1999; Klinect ez al., 1999). For a manager,
such digits suggest not only that violators are less reliable components in a sys-
tem than pilots who do not violate (sponsoring "the bad apple theory", see Dek-
ker (2001)), but that demotions, stringent training or supervision might take care
of the problem.

All of this presents various problems. Error classification methods presume a
close mapping between the quantity measured (numbers of errors) and the qual-
ity investigated or managed (safety). Bul safely is more than the measurement and
management of negatives (errors), if it is that at all. There is little or no evidence
that "safety" is a positivistic given that exists 'oul there', independent of opera-
tors' minds or their surrounding culture, ready to be measured by an etic probe.
What research has shown instead is that it is a "constructed human concept’
(Rochlin, 1999, p. 1550). This research in human factors has begun to probe how
individual practitioners construct safety, by assessing what they understand risk
to be, and how they perceive their difficulty of managing challenging situations
(Orasanu, 2001). A substantial part of practitioners' construction of safety turns
oul to be self-referential, assessing the pilot's own competence or skill in main-
taining safety across different situations. Amalberti (e.g. 2001) found this too: pi-
lots will do a lot (in terms of planning, preparation, anticipation, elc.) to not have
to make difficult decisions that might get them into trouble. Interestingly,
Orasanu discovered a mismatch between risk salience (how critical a particular
threat to safety was perceived to be by the practitioner) and frequency of en-
counters (how often these threats to safety are in fact met in practice). The safety
threats deemed most salient were the ones least frequently dealt with.

Given these results, it is no wonder that good empirical indicators of social and
organizational definitions of safety are difficult to obtain. Operators of reliable
systems "were expressing their evaluation of a positive state mediated by human
action, and that evaluation reflexively became part of the state of safety they were
describing" (Rochlin, 1999, p. 1550). In other words, the description itself of what
safety means to an individual operator is a part of that very safety, dynamic and

subjective. "Safely is in some sense a story a group or organization tells about

itsell and its relation to its task environment" (Rochlin, 1999, p. 1555). Clearly,

such aspects of safety can only be captured by a less elic, numerical approach. It



requires a more emic one, that probes the interpretative aspect of situated human
assessments and actions.

By treating safely as positivistically measurable, error counting breathes the sci-
entific spirit of a bygone era in human factors. It is a holdover of how perform-
ance was gauged (by counting errors) in the laboratory, testing limited, contrived
task behavior in spartan setlings that kept people's cognilion in captivily. Because
of its apparent simplicity, there is industry enthusiasm and human factors hys-
teresis to continue with such a forcedly positivistic practice, even as human fac-
tors makes ever deeper forays into the natural settings in which people carry out
actual complex, dynamic and interactive work. The idea of a positivistic count is
compelling to industry for the same reasons that any numerical performance
measurement is (e.g. Elg, 2001). Error counting becomes a quantitative basis for
managerial interventions. Pieces of data from the operation that have been ex-
cised and formalized away from their origin can be converted into graphs and
barcharts which are subsequently engineered into interventions. Never mind that
the barcharts show comparisons between apples and oranges (causes and conse-
quences of error) that kid managers into believing they have learned something
of value. It does not matter because managers, and their airlines, can elaborate
their idea of control over operational practice and its outcomes. Il is optimistic,
posilivistic progressivism. It is also illusory. The real world is not so easily fooled:
managerial "control" exists only in the sense of purposefully formulating and
trying to influence pilots' intentions and actions (Angell & Straub, 1999), which,
if done by way of sanctioning pilots, amounts to pre-historic behaviorism. In any
case it is not at all the same as being in control of the consequences (by which
safety ultimately gets measured industry-wide). Because for that the real world is
too complex and operational environments too stochastic (e.g. Snook, 2000). The
managerially appealing numbers are quite sterile, inert. They do not reflect any
of the nuances of what it is to "be there", doing the work, creating safety on the
line (e.g. Sanne, 1999). Yet this is what ultimately determines safety (as outcome):
people's local actions and assessments are shaped by their own perspec-
tives —self-referential; embedded in histories, rituals, interactions, beliels and
myths, both of their organization and them as individuals.

In the face of compelling numbers, none of this seems to matter. Recall how
Croft (2001) reported completed safety audits on 1426 line flights since 1997. It
would seem that the aviation industry has reached a point where progress on
safety gets equated with the number of airlines that have undergone such audits,
and whether pan-industry organizations have embraced the error count as a way
forward (Croft, 2001). Error counting, and a managerial dependence on quantifi-
able bases for decision making, has created an arena in which the entire aviation
industry is becoming drawn into a self-sustaining loop. The problem is that
managerial interventions (training, procedures, sanctioning etc.) not only justify
themselves on the basis of measurement, but in turn confirm the utility of the
error count. If auditors count errors for managers, they, as ("scientific") measur-
ers, have to presume that errors exist. But in order to prove that errors exist,
auditors have to measure them. In other words, measuring errors becomes the
proof of their existence, an existence that was pre-ordained by their measure-



ment. Angell and Straub (1999, p. 184) call such self-propagation "consensus
authority": Everyone agrees that counting errors is a good way forward on safety
because almost everyone seems lo agree that it is a good way forward. The prac-
tice is not questioned because few seem to question il.

Real ways forward: De-emphasizing the construction of cause

Error classifications formalize, or aid, the search for causes (of human errors).
They make this search more efficient, more speedy. But cause is not something
we find—with or without the help of error classifications. Cause is something we
construct. "The cause" is simply "that factor" where we stop looking any fur-
ther—for whatever reason (perhaps because the error classification method did
not provide any further labels). Error classification promise snappy insight into
the reasons for error and suggest that there is a quick safety fix. But systems that
pursue multiple competing goals in a resource-constrained, uncertain world re-
sist quick fixes. The construction of cause is our final illusion of understanding.
Practice that goes wrong in these systems spreads out over time and in space,
touching all the areas that usually make people successful. It extends deeply into
the engineered, organized, social and operational world in which people carry
out their work. Were we to really trace "the cause" of failure, the causal network
would fan out immediately, like cracks in a window, with only we determining
when and where to stop looking because the evidence will not do it for us. La-
beling certain assessments or actions in the swirl of human and social and tech-
nical activily as causal, or as "errors"
timately arbitrary.

and counting them in some database, is ul-

Several recent investigations of human error (all consistently huge and still in-
complete) have drifted away from the construction of cause, and moved towards
the identification of patterns, or genotypical mechanisms of failure that appear to
recur in different manifestations. For example:

*  Vaughan (1996) describes the normalization of deviance, by which signals of
increasing danger are normalized because the organization's repetitive expo-
sure to them continually creates new norms. Every new inslance of deviance
is only a marginal departure from the new norm, and has no clear safety con-
sequences;

e Sarter & Woods (1997) describe the going sour progression, where a series of
misassessments and miscommunications between people and automated
syslems are necessary Lo push a system over the edge of breakdown (see also
FAA, 1996);

*  Snook (2000) describes practical drift, the mechanism by which a mismatch
between procedures and practice grows undetected over time as a result of
normally loosely coupled operations that both encourage and allow local pro-
cedural adaptations in the face of pressures to succeed;

® Orasanu ez al. (in press) describe plan continuation, where practitioners con-
tinue with a plan of action in the face of cues that, in hindsight, warranted
changing the plan.



These investigations (cf. Moshansky, 1992—the hugest of them all) attempt to un-
derstand how people cannot be perfect creators of safety in operational worlds
where resources (e.g. time, computational capacity) are limited and multiple goals
compele for attention. The investigations uncover systematic patterns whereby
people's normally successful creation of safety appears to break down. This may
be where real progress on safety lies. Nol in counling positivistic "negatives” in as
many episodes of practice as possible (i.e. even more than 1426), but in beginning
to understand how operational people see and create safety in practice them-
selves, and how universal patterns of breakdown occur repeatedly across opera-
tional particulars. This requires human factors to pursue the accumulation of re-
search experience, and the building of theories, that emphasize the constructivist
nature of safety; that encapsulate not just people's activities but their (and their
organizalions') self-reference, histories, rituals, interactions, beliefs and myths.
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